Video Saliency Detection via Dynamic Consistent Spatio-Temporal Attention Modelling

Sheng-hua ZHONG¹, Yan LIU¹, Feifei REN^{1,2}, Jinghuan ZHANG², Tongwei REN³

¹Department of Computing, The Hong Kong Polytechnic University ²School of Psychology, Shandong Normal University ³Software Institute, Nanjing University

- Introduction to video saliency detection
- Spatio-temporal attention technique
- Experiments and results
- Conclusion and future work

- Introduction to video saliency detection
- Spatio-temporal attention technique
- Experiments and results
- Conclusion and future work

Introduction to Saliency Map

Definition of saliency map

- The most famous attention model, referred to as the allocation of processing resources
- Measure of conspicuity and calculate the likelihood of a location to attract attention [Koch et. al, Hum Neurobiol, 1985]

(a) original image

(b) Eye- fixation locations

(c) Ground truth of saliency map

- Motivation of constructing saliency map
 - Provide predictions about which regions are likely to attract observers' attention
 - Be useful to image/video representation (Wang et al. ICME,2007), object detection and recognition (Yu et al. ACMMM, 2010), object tracking (Yilmaz et al. CSUR, 2006), and robotics controls (Jiang & Crookes, AAAI, 2012)

Video Saliency Detection

Definition of video saliency map

- Calculate the salient degree of each location both in spatial and in temporal areas [Li et al. AAAI, 2012]
- Not much work has been extended to video sequences where motion plays an important role

Two pathways simulation

- Video saliency detection procedure are divided into spatial and temporal channels [Marat et al., IJCV, 2009] corresponding to the magnocellular and parvocellular pathways
- Classical optical flow model is the most widely used motion detection approaches in video saliency detection
- Classical optical flow model in saliency detection
 - The independent calculation of each frame pair leads to high computational complexity
 - The continuous motion of the prominent object cannot be popped out

- Introduction to video saliency detection
- Spatio-temporal attention technique
- Experiments and results
- Conclusion and future work

Framework of Spatio-temporal Attention Technique

Video Saliency Detection via Dynamic Consistent Spatio-Temporal Attention Modelling

Temporal Saliency Map Construction

Basic idea

- Emphasize the dynamic continuity of neighbor locations in the same frame
- Emphasize the dynamic continuity of same locations in the temporal domain

Dynamic Consistent Saliency Detection

Algorithm 1: Dynamic Consistent Saliency Detection. Video sequence data X; Number of frames N; Pyramid level N_p.4 Input: Output: Temporal saliency map TSmap. + while $m \leq N_f - n_{\psi}$ 1. 2. p=1;₽ while $p < N_p + 1 \operatorname{do}_{v}$ 3. $(\mathbf{u},\mathbf{v}) = \arg\min E(\mathbf{u},\mathbf{v},\hat{\mathbf{u}},\hat{\mathbf{v}});$ 4. $(i^*, j^*) = \arg\max_{i,j} (\sqrt{u_{i,j}^2 + v_{i,j}^2});$ 5. if $\sqrt{u_{i,j}^{*} + v_{i,j}^{*}} > \sigma_o(i^*, j^*) / 2^{p-1}$ and $n > 1_{*}$ 6. 7. $n = \max(n - 1, 1); p = 1;$ 8. else₽ 9. p = p + 1;10. end if∉ end while. 11. **TSmap**_m $(i, j) = \text{normalize}(\sqrt{u_{i,j}^2 + v_{i,j}^2}) +$ 12. 13. m = m + n;14. end while.

Spatial Saliency Map and Spatio-Temporal Saliency Fusion

Spatial saliency map construction

- Extraction: multiple low-level visual features are extracted at multiple scales
- Activation: activation maps are built based on multiple low-level feature maps
- Normalization: saliency map is constructed by a normalized combination of the activation map
- Spatio-temporal saliency fusion
 - Different fusions methods can be utilized, such as "mean" fusion, "max" fusion, and "multiplicative" fusion
 - "Max" integration method has best performance [Marat et al., IJCV, 2009]

FSmap = max(**SSmap**, **TSmap**)

SSmap: Spatial saliency map ; **TSmap**: Temporal saliency map; **FSmap**: Spatio-temporal saliency map.

- Introduction to video saliency detection
- Spatio-temporal attention technique
- Experiments and results
- Conclusion and future work

Experiment Setting

Datasets

- Hollywood2 natural dynamic human scene videos dataset [Marszallek et al., CVPR, 2009]
 - Ten different natural environments, including: house, road, bedroom and so on
- Three typical CNN Headline news videos
 - Each video clip is approximately 30 seconds and the frame rate is 30 frames/second
 - Resolution is 640×360
- Subset of the largest real world actions video dataset with human fixations
 - 12 categories, 884 videos clips, including: answering phone, driving car, eating and so on
 - 16 subjects' fixations
 - First 5 video clips from every category
- Compared algorithms
 - Temporal saliency detection models
 - Classical optial flow model (COF) [Horn & Schunck, AI, 1981] [Black & Anandan, CVIU, 1996]
 - Spatial continuous optical flow model (SOF) [Sun et al., CVPR, 2010]
 - Spatio saliency detection models
 - Itti saliency model (Itti) [Itti et al., PAMI, 1998], graph based saliency map (GBVS) [Harel et al., NIPS, 2007]

Experiments on Natural Dynamic Scene Videos

Dataset

- □ Hollywood2 natural dynamic human scene videos dataset
- Experiments on face detection
 - Higher level visual cortex regions influence the human's attention in a top-down manner;
 - Humans often fixate on people and face; Face detection region is often added into saliency map as a high level feature [Judd et al., NIPS 2009] [Mathe & Sminchisescu, ECCV, 2012]

Face Saliency Detection on Natural Dynamic Scene Videos

Table . Face saliency detection on natural dynamic scene videos				
Model	Average Saliency Value	Average Detection Accuracy		
DCOF	0.6501	0.8252		
COF	0.6018	0.7537		
SOF	0.6393	0.7782		

(b) Face detection result

(d) Saliency map visualization

(e) Saliency map of SOF

Video Saliency Detection via Dynamic Consistent Spatio-Temporal Attention Modelling

Experiments on News Headline Videos

Dataset

- Three typical CNN Headline news videos
- Compared algorithms
 - Temporal saliency detection models COF, SOF

Experiments

- Efficiency comparison
- Effectiveness comparison

Table. Efficiency	comparison	on the news	headline videos
-------------------	------------	-------------	-----------------

Model	DCOF	COF	SOF
Running Time per Frame (s)	33.12	46.24	53.88
Output Frame Ratio	0.4	1	1

Experiments on News Headline Videos

Figure. Temporal saliency detection result.

Experiments on Eye-tracking Action Videos

Dataset: Largest real world actions video dataset with human fixations

Sample video with eye-tracking fixations

- Compared algorithms
 - Temporal saliency detection models COF, SOF
 - □ Spatio-temporal saliency detection models (Itti, GBVS)+ (COF, SOF)
- Two experiments
 - Average receiver operating characteristic (ROC) areas
 - Average receiver operating characteristic (ROC) curves

ROC Area Comparison

• The area under the ROC curve to demonstrate the performance of a saliency model

ROC Area	DCOF	COF	SOF
Answer phone	0.6098	0.5303	0.5910
Drive car	0.5233	0.4817	0.5195
Eat	0.6902	0.6598	0.6644
Fight	0.6045	0.5535	0.6005
Get out car	0.5260	0.4874	0.5212
Hand shake	0.6993	0.6485	0.6934
Hug	0.6402	0.5602	0.5996
Kiss	0.5833	0.5120	0.5503
Run	0.5535	0.5104	0.5496
Sit down	0.5183	0.4761	0.5074
Sit up	0.5171	0.4871	0.5006
Stand up	0.5602	0.5269	0.5601

ROC Curve Comparison

• ROC curve is plotted as the False Positive Rate vs. Hit Rate

Video Saliency Detection via Dynamic Consistent Spatio-Temporal Attention Modelling

- Introduction to video saliency detection
- Spatio-temporal attention technique
- Experiments and results
- Conclusion and future work

Conclusion and Future Work

- Conclusion
 - Emphasize the dynamic consistency of neighbor locations in the same frame and same locations in the temporal domain
 - Effective prominent object detection and coverage
 - Better efficiency and less storage space
- Future work
 - Jointly optimize the spatial and temporal saliency detection together

Reference

- [Black, M. J. & Anandan, P. 1996. The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. In *Computer Vision and Image Understanding*, 63, pages 75–104.
- Harel, J., Koch, C., and Perona, P.. 2007. Graph-based visual saliency. In Proceedings of the 20th Annual Conference on Neural Information Processing Systems (NIPS), pages 545-552.
- Horn, B. & Schunck, B. 1981. Determining optical flow. In *Artificial Intelligence*, 16, pages 185–203.
- Jiang, J.R. & Crookes, D.. 2012. Visual saliency estimation through manifold learning. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, pages 2003-2010.
- Judd, T., Ehinger, K., Durand, F. and Torralba, A.. 2009. Learning to predict where humans look. In Proceedings of the IEEE 12th International Conference on Computer Vision (ICCV), pages 2106-2113.
- Itti, L., Koch, C. and Niebur, E. 1998. A model of saliency-based visual attention for rapid scene analysis. In *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 20(11), pages 1254-1259.
- Koch, C. & Ullman, S. 1985. Shifts in selective visual attention: Towards the Underlying Neural Circuitry. In *Human Neurobiology*, pages 219-227.
- Li, B., Xiong, W.H., Hu, W.M.. 2012. Visual saliency map from tensor analysis. In Proceedings of the 26th AAAI Conference on Artificial Intelligence, pages 1585-1591.
- Marszalłek, M., Laptev, I., and Schmid, C.. 2009. Actions in Context. In Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).
- Marat, S., Ho Phuoc, T., Granjon, L., Guyader, N., Pellerin, D., Gu érin-Dugu é A.. 2009. Modelling spatio-temporal saliency to predict gaze direction for short videos. In *International Journal of Computer Vision*, 82(3), pages 231–243.
- Mathe, S. & Sminchisescu, C.. 2012. Dynamic Eye Movement Datasets and Learnt Saliency Models for Visual Action Recognition, In Proceedings of the 9th European Conference on Computer Vision (ECCV), pages 842-856.
- Sun, D., Roth, S., Black, M. J. 2010. Secrets of Optical Flow Estimation and Their Principles. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR).

Reference

- Wang, T., Mei, T., Hua, X.-S., Liu, X., and Zhou, H.-Q. 2007. Video collage: A novel presentation of video sequence. In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo (ICME), pages 1479--1482.
- Yilmaz, A., Javed, O., and Shah, M. 2006. Object Tracking: A Survey, In ACM Computing Surveys, 38(4), pages 13.
- Yu, H., Li, J., Tian, Y., Huang, T., 2010. Automatic interesting object extraction from images using complementary saliency maps, In Proceedings of the 18th ACM International Conference on Multimedia (ACMMM), pages 891-894.

Thank You!