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Introduction to Saliency Map

 Definition of saliency map

 The most famous attention model, referred to as the allocation of processing 

resources 

 Measure of conspicuity and calculate the likelihood of a location to attract attention 
[Koch et. al, Hum Neurobiol, 1985]

 Motivation of constructing saliency map
 Provide predictions about which regions are likely to attract observers’ attention

 Be useful to image/video representation (Wang et al. ICME,2007), object detection and 
recognition (Yu et al. ACMMM, 2010), object tracking (Yilmaz et al. CSUR, 2006), and 
robotics controls (Jiang & Crookes, AAAI, 2012)

4

(a) original image (b) Eye- fixation locations (c) Ground truth  of saliency map
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Video Saliency Detection

 Definition of video saliency map

 Calculate the salient degree of each location both in spatial and in temporal 
areas [Li et al. AAAI, 2012]

 Not much work has been extended to video sequences where motion plays an 
important role

 Two pathways simulation

 Video saliency detection procedure are divided into spatial and temporal 
channels [Marat et al., IJCV, 2009] corresponding to the magnocellular and 
parvocellular pathways

 Classical optical flow model is the most widely used motion detection 
approaches in video saliency detection

 Classical optical flow model in saliency detection

 The independent calculation of each frame pair leads to high computational 
complexity

 The continuous motion of the prominent object cannot be popped out
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 Basic idea

 Emphasize the dynamic continuity of neighbor locations in the same frame 

 Emphasize the dynamic continuity of same locations in the temporal domain

Temporal Saliency Map 

Construction
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Dynamic continuity of same 

locations in temporal domain

Smoothness within a region 

in the auxiliary flow field

Dynamic continuity of neighbor 

locations in same frame

Constraint based on the 

observation standard deviation 

of human visual system
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Dynamic Consistent Saliency 

Detection
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Spatial Saliency Map and Spatio-

Temporal Saliency Fusion
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 Spatial saliency map construction

 Extraction: multiple low-level visual features are extracted at multiple scales 

 Activation: activation maps are built based on multiple low-level feature maps

 Normalization: saliency map is constructed by a normalized combination of the 

activation map

 Spatio-temporal saliency fusion

 Different fusions methods can be utilized, such as “mean” fusion, “max” fusion, 

and “multiplicative” fusion

 “Max” integration method has best performance [Marat et al., IJCV, 2009]

 max( , )FSmap SSmap TSmap

SSmap: Spatial saliency map ;    TSmap: Temporal saliency map;

FSmap: Spatio-temporal saliency map.
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 Datasets
 Hollywood2 natural dynamic human scene videos dataset [Marszallek et al., CVPR, 2009]

 Ten different natural environments, including: house, road, bedroom and so on

 Three typical CNN Headline news videos

 Each video clip is approximately 30 seconds and the frame rate is 30 frames/second

 Resolution is 640×360

 Subset of the largest real world actions video dataset with human fixations 

 12 categories, 884 videos clips, including: answering phone, driving car, eating and so on

 16 subjects’ fixations

 First 5 video clips from every category

 Compared algorithms
 Temporal saliency detection models

 Classical optial flow model (COF)  [Horn & Schunck,  AI, 1981] [Black & Anandan, 
CVIU, 1996]

 Spatial continuous optical flow model (SOF) [Sun et al., CVPR, 2010]

 Spatio saliency detection models

 Itti saliency model (Itti) [Itti et al., PAMI, 1998], graph based saliency map (GBVS) [Harel
et al., NIPS, 2007]

Experiment Setting
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 Dataset

 Hollywood2 natural dynamic human scene videos dataset

 Experiments on face detection

 Higher level visual cortex regions influence the human’s attention in a 

top-down manner; 

 Humans often fixate on people and face; Face detection region is often 

added into saliency map as a high level feature [Judd et al., NIPS 2009] [Mathe 

& Sminchisescu, ECCV, 2012]

Experiments on Natural Dynamic 

Scene Videos
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Face Saliency Detection on Natural 

Dynamic Scene Videos
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Model Average Saliency Value Average Detection Accuracy

DCOF 0.6501 0.8252

COF 0.6018 0.7537

SOF 0.6393 0.7782

Table . Face saliency detection on natural dynamic scene videos

(a) Original frame image (b) Face detection result

(c) Saliency map of DCOF (d) Saliency map visualization

(e) Saliency map of SOF (f) Saliency map visualization
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 Dataset

 Three typical CNN Headline news videos

 Compared algorithms

 Temporal saliency detection models COF, SOF

 Experiments

 Efficiency comparison

 Effectiveness comparison

Experiments on News Headline 

Videos

15

Model DCOF COF SOF

Running Time per Frame (s) 33.12 46.24 53.88

Output Frame Ratio 0.4 1 1

Table. Efficiency comparison on the news headline videos
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Experiments on News Headline 

Videos
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Figure. Temporal saliency detection result.
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 Dataset: Largest real world actions video dataset with human fixations

 Compared algorithms
 Temporal saliency detection models COF, SOF

 Spatio-temporal saliency detection models (Itti , GBVS)+ (COF, SOF)

 Two experiments
 Average receiver operating characteristic (ROC) areas

 Average receiver operating characteristic (ROC) curves

Experiments on Eye-tracking 

Action Videos
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 The area under the ROC curve to demonstrate the performance of 
a saliency model

ROC Area Comparison

18

ROC Area DCOF COF SOF

Answer phone 0.6098 0.5303 0.5910

Drive car 0.5233 0.4817 0.5195

Eat 0.6902 0.6598 0.6644

Fight 0.6045 0.5535 0.6005

Get out car 0.5260 0.4874 0.5212

Hand shake 0.6993 0.6485 0.6934

Hug 0.6402 0.5602 0.5996

Kiss 0.5833 0.5120 0.5503

Run 0.5535 0.5104 0.5496

Sit down 0.5183 0.4761 0.5074

Sit up 0.5171 0.4871 0.5006

Stand up 0.5602 0.5269 0.5601
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 ROC curve is plotted as the False Positive Rate vs. Hit Rate

ROC Curve Comparison
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Conclusion and Future Work

 Conclusion

 Emphasize the dynamic consistency of neighbor locations 
in the same frame and same locations in the temporal 
domain

 Effective prominent object detection and coverage

 Better efficiency and less storage space

 Future work

 Jointly optimize the spatial and temporal saliency detection 
together
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